
AEROSPACE REPORT NO. 
TR-2009(8550)-11 

Adaptation and Speciation in Genetic Modeling 
of Physical Systems 

15 September 2009 

Albert H. Zimmerman 
Electronics and Photonics Laboratory 
Physical Sciences Laboratories 

Prepared for: 

Space and Missile Systems Center 
Air Force Space Command 
483 N. Aviation Blvd. 
El Segundo, CA 90245-2808 

Authorized by: Engineering and Technology Group 

APPROVED FOR PUBLIC RELEASE; 
DISTRIBUTION UNLIMITED 

(2h AEROSPACE 
^—S Assiinnn Snare Mission Sun <ssion Success 



This report was submitted by The Aerospace Corporation, El Segundo, CA 90245-4691, under Con- 
tract No. FA8802-09-C-0001 with the Space and Missile Systems Center, 483 N. Aviation Blvd., El 
Segundo, CA 90245. It was reviewed and approved for The Aerospace Corporation by Bernardo 
Jaduszwiler, Principal Director, Electronics and Photonics Laboratory; and D. C. Marvin, Principal 
Director, Research and Program Development Office. David E. Davis was the project officer for the 
Mission-Oriented Investigation and Experimentation (MOIE) program. 

This report has been reviewed by the Public Affairs Office (PAS) and is releasable to the National 
Technical Information Service (NTIS). At NTIS, it will be available to the general public, including 
foreign nationals. 

This technical report has been reviewed and is approved for publication. Publication of this report 
does not constitute Air Force approval of the report's findings or conclusions. It is published only for 
the exchange and stimulation of ideas. 

\jHfw_Pp 

SC-1753(2, 5630, 15, JS) 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing this collection of information  Send comments regarding this burden estimate or any other aspect of this collection of information, 
including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0186), 1215 Jefferson 
Davis Highway, Suite 1204, Arlington. VA 22202-4302   Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to 
comply with a collection of information if it does not display a currently valid OMB control number  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 
15-09-2009 

2. REPORT TYPE 3. DATES COVERED (From - To) 

4. TITLE AND SUBTITLE 

Adaptation and Speciation in Genetic Modeling of Physical Systems 

5a. CONTRACT NUMBER 
FA8802-09-C-0001 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

Albert H. Zimmerman 5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

The Aerospace Corporation 
Physical Sciences Laboratories 
El Segundo, CA 90245-4691  

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

TR-2009(8550)-ll 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Space and Missile Systems Center 
Air Force Space Command 
483 N. Aviation Blvd. 
El Segundo, CA 90245 

10. SPONSOR/MONITOR'S ACRONYM(S) 
SMC 

11. SPONSOR/MONITOR'S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited. 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
20100302249 

A genetic algorithm has been used to allow a population of First principles lithium-ion (Li-ion) battery cell models to adapt to a 
database obtained from life-testing 50-Ah Li-ion cells. This adaptive process allows the fundamental processes that control the 
cell performance to be extracted from the life test data. During the process of genetic adaptation, the population of battery cell 
models has been observed to separate into two distinct species of models. The emergence of separate species is recognized by 
the inability to produce viable offspring models from mixtures of the genetic codes for the two species. In this situation, the two 
species are found to co-exist for up to many hundreds of generations. However, one of the two species eventually suffered 
extinction because it did not retain adequate genetic diversity and because its fitness did not continue to improve as did that of 
the other species. The dynamics involved in genetic adaptation of battery cell models, including the roles of speciation and 
extinction, are described. 

15. SUBJECT TERMS 
Battery, Lithium ion, Model, Genetic analysis, Speciation, Life test, Adaptive modeling, Life prediction 

16. SECURITY CLASSIFICATION OF: 

a. REPORT 

UNCLASSIFIED 

b. ABSTRACT 

UNCLASSIFIED 

c. THIS PAGE 

UNCLASSIFIED 

17. LIMITATION 
OF ABSTRACT 

Leave blank 

18. NUMBER 
OF PAGES 

15 

19a. NAME OF RESPONSIBLE 
PERSON 

Albert Zimmerman 
19b. TELEPHONE NUMBER 
(include area code) 

(310)336-7415 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. 239.18 



Contents 

1. Introduction  1 

2. Model Description  3 

3. Genetic Algorithm  5 

4. Typical Genetic Adaptation Dynamics  7 

5. Speciation during Genetic Adaptation  9 

5.1 Causes for Speciation  10 

5.2 Causes for Extinction  11 

6. Conclusions  13 

Reference  15 

Figures 

1. Measured and optimized model cell voltages after 5505 cycles at 40% depth of discharge      6 

2. Change in the fitness distribution through the generations 
of a genetic algorithm for a typical dataset following 7538 cycles 
of a 50-Ah Li-ion cell at 30% depth of discharge         7 

3. Approach of the fittest model in the population distribution 
toward the optimum as a result of genetic adaptation         8 

4. Evolution of a bimodal fitness distribution during the genetic analysis of a dataset 
after 3474 cycles of a 50-Ah Li-ion cell at 30% depth of discharge         9 

5. Initial fitness distributions for starting 40 models in genetic analysis       10 

6. Distributions of SEI conductivity observed during the genetic analysis 
of the data from capacity check 3 after 3474 cycles 
of a 50-Ah Li-ion cell at 30% depth of discharge       11 

in 



1. Introduction 

Genetic modeling of physical systems provides a technique that enables complex models of these 
systems to undergo adaptation such that they realistically describe the behavior of the physical sys- 
tem. This modeling method utilizes a genetic algorithm to adapt a population of models to the 
observable characteristics of the physical system. The fittest models in the population are those that 
best describe the physical system, and the genetic algorithm enables the fittest models to most 
strongly influence the emergence of each generation in the population from the previous generation. 
This technique enables complex models that contain dozens of adjustable parameters to find the com- 
bination of parameters that most accurately describes the real-world physical system that is being 
modeled. 

Here we use a first principles model of a lithium-ion (Li-ion) battery cell with a genetic algorithm to 
determine the set of parameters that best matches the observed performance of a 50-Ah battery cell 
during a life test. The dynamics of how the population of models adapts to the data will be examined. 
The roles of the initial population distribution and the population diversity during the genetic adapta- 
tion process will be discussed. The discussion will highlight the conditions that can lead to the spon- 
taneous formation of multiple species of models, as well as the conditions that can lead to extinction 
of species within the population. 



2. Model Description 

The model used here to describe the physics and chemistry of a prismatic lithium-ion (Li-ion) battery 
cell and predict its performance from first principles has been described in detail in Reference 1. This 
model couples a finite-element description of the macroscopic cell geometry to a first-principles 
description of the key processes that control cell performance. Nine key parameters in the model that 
are expected to potentially change during a life test are used to comprise the genome that is subject to 
genetic adaptation. These nine parameters are: 

1. Total cathode capacity for Li ions 

2. Initial cell state of charge 

3. Lithium-ion diffusion rate in the cathode active material 

4. Total anode capacity to reversibly intercalate lithium 

5. Amount of charge remaining in anode or cathode when the cell is fully discharged 
(anode/cathode charge balance) 

6. Charge transfer resistance in cathode 

7. Cell series resistances (anode SEI and electrolyte resistance) 

8. Cathode surface polarization rate 

9. Cathode surface polarization potential 



3. Genetic Algorithm 

Each of the nine parameters described in the previous section constitutes one of the nine genetic 
codons that describe an individual model of the lithium-ion (Li-ion) cell. The genetic analysis per- 
formed here involved a population of 40 individual models, each having its own individual genome. 
The starting population utilized the 40 models that best fit the data from a group of 400 models that 
were randomly generated using physically reasonable ranges for each of the codons. The fitness of 
each specific model was based on the average fit between the cell voltage data during a 
charge/discharge cycle and that predicted by the model based on its genome. A genetic algorithm 
was used to track the lifetime of each model in the population, and defined the offspring produced by 
each model to form the next generation, as well as the epigenetic shifts in the genome that could 
occur during the lifetime of each individual model. 

The genetic algorithm has been defined in detail in Reference I. The key elements that this algorithm 
uses to define each generation of models from the previous generation are: 

1. Epigenetic drift was allowed to occur over the lifetime of an individual model to improve 
the fitness of its genome in response to its local environment. 

2. Roulette selection (selection probability proportional to fitness) provided the basis for 
selecting which model was to generate an offspring model, and for selecting a model with 
which it could mate. 

3. Genetic mixing was used to produce offspring, which was based on selection of a random 
point along the 9-dimensional linear vector connecting the genomes of two individual 
models and extending 50% past each individual genome. 

4. Mutations occurred at the birth of 0.5% of the offspring, which involved random shifts in 
a randomly selected codon within the physically reasonable range for that codon. This 
helped maintain genetic diversity in the population. 

5. Only offspring having fitness better than their parents were included in the models that 
made up each new generation. All other offspring were allowed to die without contribut- 
ing to propagation of the next generation. 

6. If an offspring model having improved fitness could not be generated after 80 mating 
attempts, the parent model was preserved in the new population. This rarely occurred. 

7. Each new generation was limited to 40 offspring. 

As the genetic algorithm described above changed the population of models from generation to gen- 
eration, the quality of the fit between the cell test data and the model prediction of the cell voltage 
improved. The adaptation process was assumed to have converged to the optimum model when the 
deviation of the fittest model in the population improved by 0.000002 V or less over four full genera- 
tions. For the life test data analyzed in this report, the average deviation between the data points and 



the model performance prediction at convergence was in the range of 0.004 to 0.008 V. A typical 
example showing the model results compared to the data at convergence is shown in Figure 1. 

Time (hr) 
Figure 1.     Measured and optimized model cell voltages after 5505 cycles 

at 40% depth of discharge. 



4. Typical Genetic Adaptation Dynamics 

The process of genetic adaptation can be followed by examining the fitness distribution of the popu- 
lation of models over the generations as adaptation continues to improve the quality of the fit to the 
data. This shift in distribution is shown in Figure 2 for a typical process of genetic adaptation to a test 
dataset. Each distribution has a characteristic width that reflects the genetic diversity of the popula- 
tion. The fittest model in each population occurs at the lower threshold of the distribution, which is 
typically somewhat below the most probable fitness in the population. 

A number of features in Figure 2 are of interest.  First, the starting distribution tends to be relatively 
wide since the starting models are randomly generated over a range of starting parameters that is wide 
enough to cover all likely parameter values. As shown by the blue curve in Figure 2, after 40 genera- 
tions, the population has a fitness of 15 to about 30 mV. As the fitness of the population improves 
over the generations, the most noteworthy feature is the significant narrowing of the distribution, until 
eventually the distribution is extremely narrow after convergence to the optimum model. For the case 
of Figure 2, it has been verified that convergence occurred at the true optimum fit by running the 
analysis several times, each time finding convergence to the same genetic code. It is important to the 
adaptation process that the distribution width does not become too narrow until the optimum solution 
is approached; otherwise, the genetic analysis could be trapped into a false solution. The maintenance 
of adequate genetic diversity is the key to assuring that the parameter distributions remain wide 
enough to explore all possible values for each parameter in the genome. 
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Fitness of Models in Population (Volts deviation) 

Change in the fitness distribution through the generations of a genetic algorithm 
for a typical dataset following 7538 cycles of a 50-Ah Li-ion cell at 30% depth of 
discharge. The sharp red distribution represents the population after convergence 
to the optimum solution. 



Another feature of interest in Figure 2 is the occasional suggestion of a bimodal distribution, seen in 
the blue curve and in the gold curve. These features are caused by the random concentration of 
population members in specific ranges of parameters as new generations are born. Normally these 
features persist for only a few generations before being overwhelmed by the generational population 
shifts. 

In the case of Figure 2, convergence was relatively rapid because the converged values for each of the 
nine genetic codons were well within the initial range specified for each of these parameters. If the 
converged value for a particular codon is well outside the initial specified range, a somewhat different 
approach to convergence is found, as is shown in Figure 3. In Figure 3, the fittest model in the 
population is shown as a function of generation. In this case, we see a rapid improvement in fitness 
down to about 0.004 V over the first 300 generations, followed by a very slow convergence over 
about 3000 generations to the final solution. The reason for the slow convergence is because the cor- 
rect cathode capacity was about 10 Ah higher than the range for cathode capacity that was initially 
specified. During the 3000 cycles of slow convergence, the cathode capacity gradually walked 
upward about 10 Ah to the correct value. This example illustrates not only how important the initial 
parameter ranges are, but also the power of the genetic algorithm in finding an optimized value that 
was well outside the initially expected range. 

0.06 

Figure 3. 
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Approach of the fittest model in the population distribution toward the optimum 
as a result of genetic adaptation. The long convergence tail results because the 
allowed cathode capacity range was initially chosen to be 10 Ah below the cor- 
rect cathode capacity. 



5. Speciation during Genetic Adaptation 

The process of genetic adaptation does not always proceed as smoothly as illustrated in Figures 2 or 
3. Figure 4 illustrates the changes in the distributions of population fitness obtained from a genetic 
analysis during which a bimodal population distribution appeared and then persisted for hundreds of 
generations. The bimodal distribution appeared to result from the formation of a new species of 
model that was distinct from the main population. The new species of model, which is shaded in blue 
in Figure 4, was characterized by a complete inability to mate with models in the original species and 
produce viable offspring. All offspring of such mating encounters were so extremely unfit that they 
had no hope of surviving. Thus, the main species adapted by mating with models of its own species, 
and the new species adapted only through mating with others of its own species. When the new spe- 
cies originally formed, it contained up to 18 members of the entire population of 40. 

The new species continued to thrive for hundreds of generations after its initial formation several 
hundred generations into the analysis. However, by generation 720 it was beginning to show signs of 
genetic weakness. The number of the new species individuals had dropped down to about 12 in each 
generation, and its genetic diversity had begun to become seriously reduced. By generation 920, 
essentially all genetic diversity had been lost, and only 9-10 individuals remained. The last 5 indi- 
viduals in this new species failed to produce any viable offspring after generation 1040, and the new 
species was thereafter extinct. 
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Evolution of a bimodal fitness distribution during the genetic 
analysis of a dataset after 3474 cycles of a 50-Ah Li-ion cell at 
30% depth of discharge. 

0.0094 



5.1 Causes for Speciation 
A new species seems to be characterized by several key properties. The first of these is that its 
genome is significantly different from that of other species. The second key characteristic is that its 
members can only produce viable offspring by mating with member of their own species. The forma- 
tion of a new species, as well as its later slide into extinction, is of general interest in terms of the 
underlying causes for these events. The formation of the new species could in principle be the result 
of either some unusual characteristic of the dataset that was being analyzed, or the result of some 
unusual asymmetry in the starting model distribution that became accentuated during the genetic 
analysis. 

The dataset that was being analyzed when the speciation was observed was compared to other 
datasets from the same cell at different points in time during the life test. The datasets appeared very 
similar, and no features could be found that would be expected to produce different behavior for one 
and not the others. A repeated genetic analysis of the dataset that caused the speciation in Figure 4 
gave no evidence of speciation. Thus, the conclusion was reached that the underlying cell dataset was 
not the cause for the speciation. 

The other likely cause was an unusual distribution of parameters in the starting population selected 
for the genetic analysis. The starting population contained the 40 fittest models from 400 randomly 
generated models. The distribution of the fitness of the starting models for the analysis in which the 
new species was seen is shown in Figure 5, along with the starting population for two other similar 
analyses. 

The results in Figure 5 do suggest that there was at least one, and perhaps two sub-distributions that 
were present in the initial population for capacity check 3, and that later developed into distinct spe- 
cies of models. To determine the root cause for this separation into species, we examined the indi- 
vidual parameter distributions that developed as the new species formed. While a number of the nine 
parameters that make up the genome for the model developed bimodal distributions as the new spe- 
cies formed, the key parameter that appeared to prevent viable mating between the species was the 
SEI conductivity in the anode of the Li-ion cell. 
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Figure 5. Initial fitness distributions for starting 40 models in genetic analysis. Capacity check 
3 was the analysis for which the population segregated into two distinct species. 
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As shown in Figure 6, after about 100 generations, the models had separated into one group having 
low SEI conductivity and another group having high SEI conductivity. The high-conductivity group 
was the normal species that continued to adapt and eventually converged to the optimum solution. 
The low-conductivity group became the new species that survived for hundreds of generations before 
becoming extinct. Careful examination of the genetic algorithm showed why these species went 
down their separate evolutionary paths. Because the two species developed more than an order of 
magnitude difference in SEI conductivity, the vast majority of the genetic mixtures that resulted from 
mating gave an SEI conductivity that was well below the low distribution range, well above the high 
distribution range, or somewhere in between. None of these regions gave a model fitness that was 
competitive with the existing models in either distribution, thus causing essentially all inter-species 
offspring to die without reaching maturity. Clearly, this situation met both criteria for having two 
distinct species: both significantly differing genomes, and loss of the ability to mate with the other 
species. 

5.2 Causes for Extinction 
Once a stable species has co-existed within a population of models for hundreds of generations, the 
reasons for the extinction of that species are of interest in terms of understanding the dynamics of 
genetic algorithm operation. For the two species that appeared in the example described above, three 
factors appear to conspire against the survival of the new species that formed and then eventually 
disappeared: 

1. The species lost the genetic diversity needed to enable it to adapt to the changing popula- 
tion environment. 

2. Its competing species became significantly more fit over time, providing a reproductive 
advantage. 

SEI Conductivity 

Figure 6.     Distributions of SEI conductivity observed during the genetic analysis of the data from 
capacity check 3 after 3474 cycles of a 50-Ah Li-ion cell at 30% depth of discharge. 



3.   The number of individuals fell below a threshold needed to assure success in finding a 
mate and producing viable offspring for each generation. 

The first of these factors, loss of genetic diversity, is recognized by the extremely narrow distribution 
for the low-conductivity species in Figure 6 at 920 generations, compared to the much wider distribu- 
tion for the high-conductivity species. The same shifts in diversity can also be seen in the fitness dis- 
tributions of Figure 4. This loss of diversity is a signal that this species has reached a genetic dead 
end, from which it cannot continue to significantly improve its fitness to compete with other species. 

The second factor, suffering from a fitness disadvantage, is partially a consequence of the loss of the 
ability to continue adapting. This, combined with the ever improving fitness of the species that is 
competing for reproductive success, makes mating opportunities ever more sparse for the less fit spe- 
cies (selection for mating and number of offspring are in direct proportion to fitness). Thus, it is the 
continued improvement in the fitness of the one species that eventually puts the other species at a sig- 
nificant reproductive disadvantage. The extinction probably would never have occurred if both spe- 
cies had remained with about the same fitness. 

The final factor, inability to sustain a critical number of species members, stems from the reproduc- 
tive disadvantage described above. Since the species can only mate successfully with other members 
of the same species, the probability that at least two viable offspring will be produced each generation 
decreases significantly below a population size threshold. For the population size and conditions 
here, the extinction occurred after about 100 generations with a population size between 8 and 9 indi- 
viduals. Any species that produces less than two offspring in a generation will become extinct in the 
next generation, for the genetic algorithm used here. 
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6. Conclusions 

The dynamics of adaptation using a genetic algorithm point to several conclusions that are important 
to understand how genetic optimization of physical systems can be done most reliably and efficiently. 
First, the results show how robust the genetic algorithm is for finding the correct solution, even when 
incorrect initial parameter ranges or bimodal input parameter distributions are provided. While speci- 
fying an initial cathode capacity that was 10 Ah off made convergence to the correct capacity very 
slow, the correct capacity was eventually obtained. While specifying a quite wide range for SEI con- 
ductivity contributed to a bimodal species distribution, the more fit species eventually forced the 
extinction of the less fit one, and the correct conductivity was eventually obtained. 

The final conclusion from this study has to do with the importance of the initial ranges for the 
parameters that comprise the genome for the model. Wide ranges for these parameters are desirable 
because we do not always know the parameters closely. However, wide ranges can significantly 
increase convergence time and can increase the probability of converging to an incorrect solution. 
Narrow initial parameter ranges increase the probability of either missing the correct solution because 
it is outside the range that is available to genetic adaptation, or substantially increasing the computa- 
tion time needed to converge to the correct solution. 

The best approach for choosing initial parameter ranges is probably one that mimics how an actual 
life test is run. Start at the beginning of the life test with relatively wide ranges for the model 
parameters. For each incremental point in the life of a cell, use the previous optimum parameters as 
the starting point (with a narrower range around them) for analysis of the next point in the lifetime of 
the cell. This approach is expected to minimize the computation time involved in the genetic analysis 
of the life test data from a battery cell. 
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